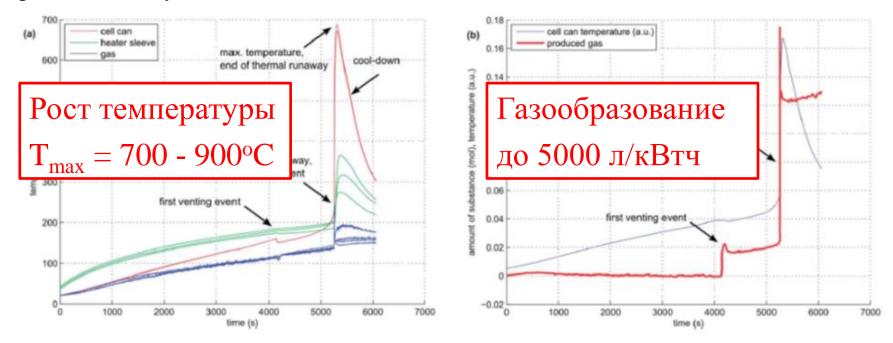
Вопросы безопасности литий-ионных аккумуляторных батарей

Алексей Недолужко

Сколковский институт науки и технологий

Пожары ЛИАБ: примеры

- **412 случаев** возгораний ЛИАБ на авиационном транспорте (на декабрь 2022, 62 случая только в 2022 году).
- 52 пожара электромобилей только в США в течение 2022 года.
- 23 пожара стационарных систем хранения энергии в Южной Корее с августа 2017 года по апрель 2019.
- Опрос на конференции «Актуальные проблемы преобразования энергии в литиевых электрохимических системах» в 2021 году показал, что 15% пользователей сталкивались с возгораниями ЛИАБ в бытовых условиях.

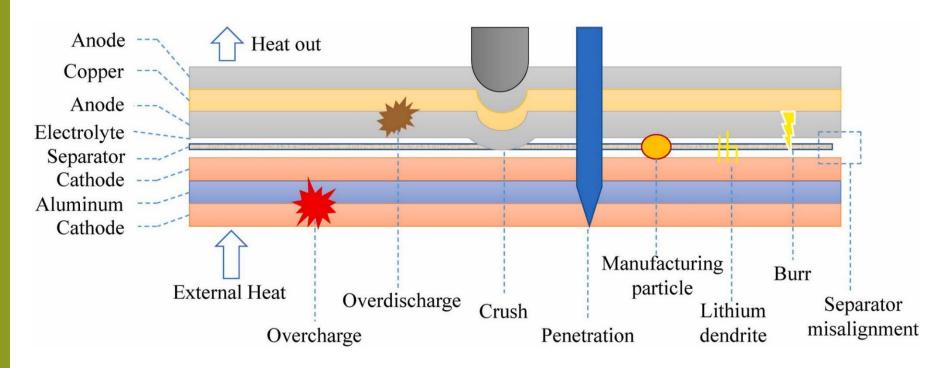


Рост температуры и газообразование при температурном разгоне

Температурный разгон - процесс неконтролируемого роста температуры аккумулятора, вызванный генерацией тепла в ходе протекания химических реакций между его компонентами

Изменение температуры (слева) и **кинетика образования газа** (справа) при температурном разгоне ЛИА 18650 с катодом NMC-45/45/10

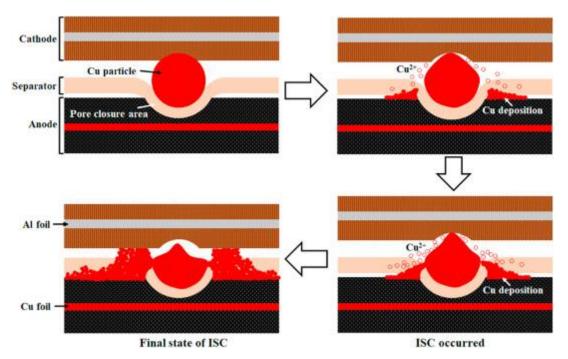
- Основные газообразные продукты: CO₂, H₂, CO
- Также токсичный фтороводород **HF**



Причины температурного разгона

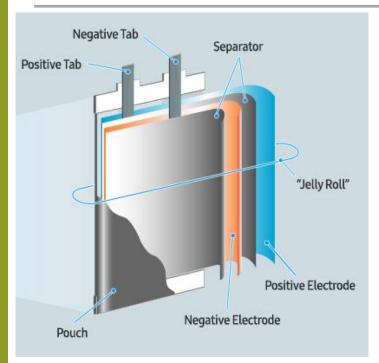
• Нарушение режимов эксплуатации

(нагрев выше 140-170°C, перезаряд, короткое замыкание, механические повреждения, заряд высоким током или при низкой температуре)


- Производственные дефекты
- Ошибки в конструкции аккумуляторов

Производственный дефект: частица металла в электроде

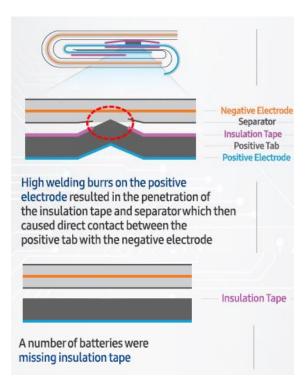
Самый известный дефект, ответственный за возгорание — **частица металла на катоде. Причина отзыва 340 тысяч** ноутбуков с ЛИАБ Sony в 2006 году.



Sun et al. eTransportation, vol. 13, August 2022, 100183


- Растворение частицы с осаждением металла на аноде
- Локальный дефект, внутреннее короткое замыкание и температурный разгон
- Полностью избавиться от инородных частиц невозможно!

Ошибки в конструкции: Samsung Galaxy Note 7 (2016)



The negative electrode was deflected in the upper-right corner of the battery

Battery B

Полный отзыв Galaxy Note 7 (убыток \$17 млрд)

Основные выявленные дефекты:

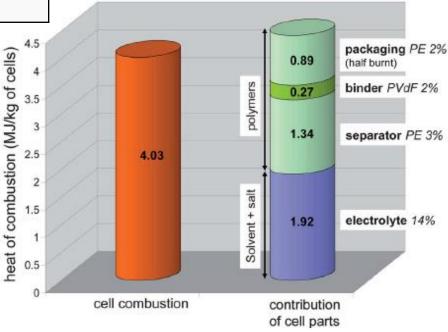
- Заусенцы в месте приварки (+) токосъемника
- Отсутствие изоляции на (+) токосъемнике

Ошибки в конструкции:

- Слишком тесный корпус => Деформация электродов
- Ультратонкий (5 мкм) РЕ сепаратор

Количество и источники образующейся энергии

Отношение образующейся энергии к номинальной энергоёмкости аккумулятора


LCO/C, 6.8 Aч, призма	5
LFP/C, 3.2 Ач, цилиндр	7-8
LFP/C, 20 Ач, пакет	12-14
LFP/C, 7 Ач, пакет	20

Larsson et al. Scientific Reports vol.7, Article no.10018 (2017)

- Выделяется энергия до 20 номиналов ЛИА, примерно 1-2 кВтч/кг
- Зависит, прежде всего, от массы ячейки
- Не зависит от состояния заряда ЛИА

Что горит в аккумуляторе?

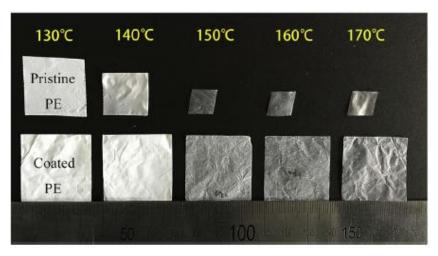
- Электролит
- Сепаратор
- Плёночный корпус
- Связующее

Ribiere et al. Energy Environ. Sci., 2012, 5, 5271

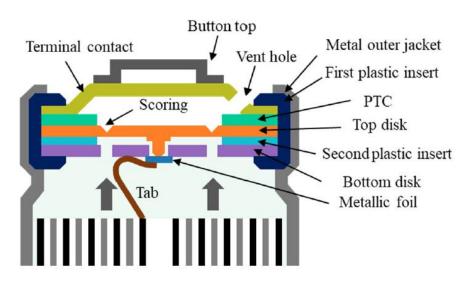
Защита аккумулятора от возгорания

Три уровня защиты

1. Материалы аккумулятора


- РЕ/РР и РР/РЕ/РР сепараторы
- Сепаратор с керамическим покрытием
- Противопожарные добавки в электролит

2. Элементы конструкции аккумулятора


- Предохранители (CID, PTC)
- Предохранительные клапаны

3. Электронные устройства

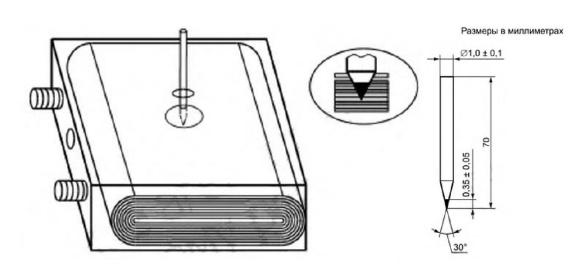
- Электронное устройство отключения ячейки
- Система контроля и управления ЛИАБ (battery management system)

PE (16 мкм) чистый и с покрытием AlOOH / PVA (2x1.15 мкм)

Эффективность защиты аккумуляторов

Фактор риска	Уровень 1	Уровень 2	Уровень 3
Нагрев (до 140°C)			
Перезаряд			
Короткое замыкание (внешняя цепь)			
Заряд при низкой температуре			
Заряд высоким током			
Переразряд			
Переполюсовка			
Механические повреждения			
Внутреннее короткое замыкание в результате производственных дефектов			

Причины практически всех возгораний коммерческих ЛИАБ:

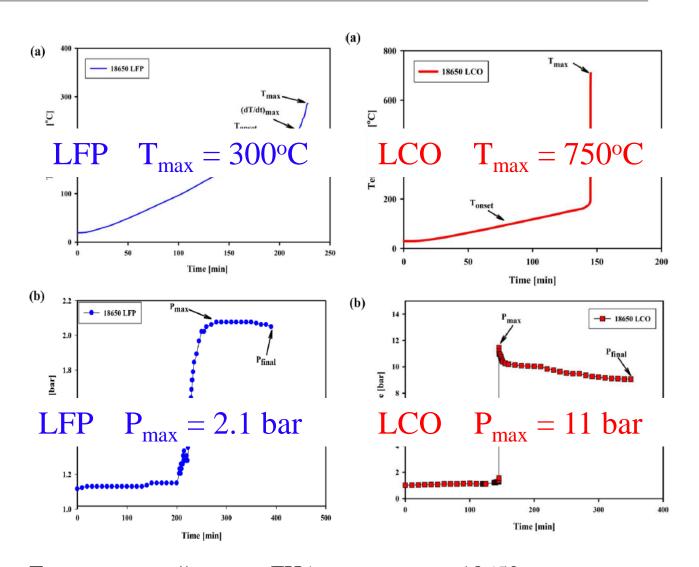

- Механические повреждения
- Производственные дефекты
- Проблемы электрики и электронных устройств

Оценка пожароопасности ЛИА по ГОСТ

ГОСТ Р МЭК 62660-2-2020 ГОСТ Р 58366-2019

- Прокол
- Вибрация
- Механический удар
- Раздавливание
- Воздействие высокой температуры
- Внешнее короткое замыкание
- Перезаряд

Шкала оценки результатов


0	Нет изменений	Отсутствует какой-либо эффект
1	Деформация	Вспучивание или другое изменение внешнего вида
2	Сброс	Утечка из клапана
3	Течь	Утечка электролита через уплотнения или клеммы
4	Дымление	Выход дыма из клапанов
5	Разрыв	Повреждение корпуса без выброса компонентов
6	Горение	Выброс пламени в течение более 1 с
7	Взрыв	Разрушение с выбросом компонентов аккумулятора

ЛИА с LFP катодом более безопасны?

Температурный разгон ЛИА с **LFP** катодом:

- Ниже температура
- Меньше газообразование (ниже давление)

Duh Y-S. Journal of Energy Storage, 2021, Vol. 41. P. 102888.

Температурный разгон ЛИА типоразмера 18650 с LFP катодом (слева) и LCO катодом (справа)

Резюме по безопасности LFP/C

LFP/C: менее активная реакция при температурном разгоне но больше тепла и HF на кВтч аккумулятора!

	LFP/C	LFP/C		CO/C, NMC/C,	etc	Ссылка	
Общее количество	7~20 Q _{ном}			5 Q _{HOM}		Larsson et al. Scientific Reports vol.7, Article no.10018 (2017)	
тепла	4.6 Q _{ном}			1.3 Q _{ном}		Wang et al Energy Sci Eng. 2019;7:411–419	
	386°C			615°C		Sturk et al Batteries 2019, 5(3), 61	
Максимальная температура	404°C			678°C, 853°C		Golubkov et al RSC Adv., 2014, 4, 3633	
zonanoporty po	535°C			659°C		Wang et al Energy Sci Eng. 2019;7:411–419	
	12°С/мин			1390°С/мин		Sturk et al Batteries 2019, 5(3), 61	
Скорость нагрева	18°С/мин			65°С/мин		Wang et al Energy Sci Eng. 2019;7:411–419	
Общее количество газа (CO ₂ , H ₂ , CO,)	420 л/кВтч		5300 л/кВтч			Sturk et al Batteries 2019, 5(3), 61	
Содержание СО в газе	5%		13%, 28%			Golubkov et al RSC Adv., 2014, 4, 3633	
L'a reverage HE	16~36 г/кВтч			6~23 г/кВтч		Sturk et al Batteries 2019, 5(3), 61	
Количество НF Страница 12	20~200 г/кВтч			20 г/кВтч		Larsson et al. Scientific Reports vol.7, Article no.10018 (2017)	

Чем тушить литий-ионные аккумуляторы?

Тушители, рекомендованные производителями ЛИА и ЛИАБ

Компания	Год	Катод	Вода	CO ₂	Пена	Порошок	Азот Песок		Хладон	Что угодно
Yuka Energy, Китай	2011	LCO		X	X	X		X		
Makita, США	2013	NCO	X		X	X				
Enertech, Корея	2017	NMC	X			X		X		
Samsung, Корея	2011	NMC	X			X				
Samsung, Корея	2016	NMO	X	X	X	X	X			
Saft, Франция	2009	LCO	X	X		X			X	
Bipower, CIIIA	2017	LCO	X	X		X				
LG Chem, Корея	2013	NMC								X
Motorola, CIIIA	2017	LCO	X	X	X	X				
Ideal, CIIIA	2010	LCO		X	X	X				
SDPT, Китай	2016	LCO	X	X						
Bren-Tronics, CIIIA	2013	LCO	X	X	X	X				
Advance Energy, CIIIA	2011	LCO								X
Leo Energy, Сингапур	2014	NMC	X		X					
IDX, Япония	2016	LMO	X	X	X	X	X			
Panasonic, CIIIA	2015	NMC	X	X	X	X				

Пожарная безопасность больших батарей

Организация ЛИАБ в виде вертикальных секций, разделённых **промежутками** (слева), **огнеупорными стенками** (в центре)

Трудности при тушении больших ЛИАБ:

- Отсутствие доступа тушителя к ячейкам, находящимся в закрытых неразборных модулях.
- Необходимость поглощения **большого количества выделяющегося тепла**. Для тушения ЛИАБ понадобится количество тушителя, кратно превышающее вес батареи. Ве

Вертикальные секции корабельной ЛИАБ Orca Energy фирмы Corvus

Пожарная безопасность больших батарей

Решение: система пожаротушения, обеспечивающая направленное тушение модуля ЛИАБ с подачей тушителя непосредственно в закрытый модуль Система пожаротушения компании **FIFI4Marine** (Нидерланды).

- Трубопроводы для подачи тушителя в модули
- Датчики обнаружения пожара в модулях
- При срабатывании датчика активируется впрыск пены в модуль
- Пенообразование при помощи сжатого воздуха

Система пожаротушения фирмы FIFI4Marine

Спасибо за внимание!

a.nedoluzhko@skoltech.ru

