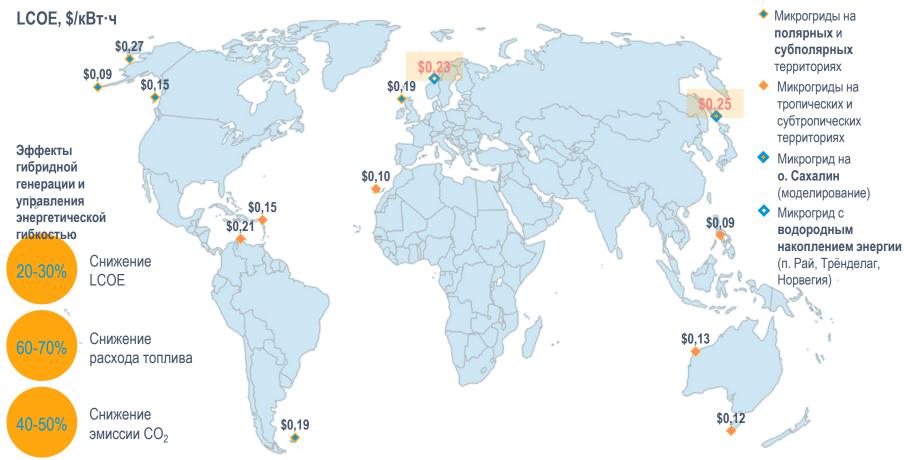


ДОКЛАД ПО РАЗВИТИЮ ИНТЕЛЛЕКТУАЛЬНОЙ ЭНЕРГЕТИКИ НА ТРУДНОДОСТУПНЫХ И ИЗОЛИРОВАННЫХ ТЕРРИТОРИЯХ

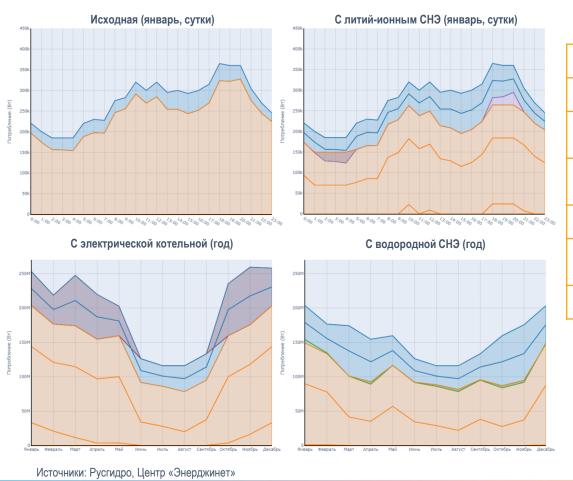
Игорь Чаусов

Директор аналитического направления АНО «Центр «Энерджинет»


Проектная сессия рабочей группы по локальной энергетике

Точка кипения «Арбат», Москва, 25 января 2024 года

Мировой опыт


Источники: NTNU, Rocky Mountain Institute, Cummins, ARENA

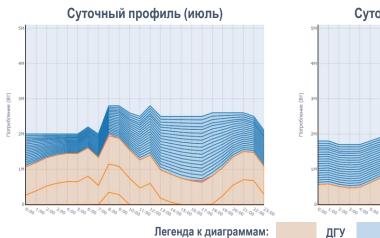
Оптимизация изолированных энергоузлов

АО «НДЭС» - с. Новиково, Сахалинская область Фактические данные и модельные расчеты

Конфигурация и источники гибкости	LCOE, ₽/кВт·ч	УРУТ, г у.т./кВт·ч	Выбросы, г СО ₂ /кВт·ч	SAIDI, ч/г		
Исходная конфигурация 2 × ДГУ 500 кВт + 1 × ВЭУ 225 кВт + 2 × ДГУ 800 кВт в резерве						
Без источников гибкости	42	431	1075	36		
Оптимальная конфигурация ДГУ 100 кВт + ДГУ 200 кВт + 2 × ВЭУ 225 кВт + 2 × ДГУ 500 кВт в резерве + источник гибкости						
С литий-ионной СНЭ 200 кВт / 80 кВт·ч	26	373	920	2		
С электрической котельной 0,2 Гкал/ч	29	210	531	3		
С водородной СНЭ 50 кВт / 11,3 МВт·ч	24	151	390	4		

Легенда к диаграммам

Оптимизация изолированных энергоузлов



п. Усть-Камчатск, Камчатский край Фактические данные и модельные расчеты

Состав оборудования	LCOE, ₽/кВт·ч (Оптимизированна я конфигурация)	LCOE, ₽/кВт·ч (Исходная конфигурация)
2 × ДГУ LB8250ZLD 1000 кВт 4 × ДГУ Cat. 3512 1500 кВт 1 × ДГУ АД-1500С-400Т 1500 кВт 17 × ВЭУ Komai KWT-300 300 кВт 1 × ВЭУ Vergnet 275 кВт 1 × СНЭ Н ₂ 50 кВт / 1560 кВт·ч	29,3	50,1

Источники: Русгидро, Центр «Энерджинет»

Energynet

National Technology Initiative

СПАСИБО ЗА ВНИМАНИЕ!

ENERGYNET.RU

t.me/internetofenergy

ENERGYNET

FUTURE ENERGY SYSTEMS CENTER

Обзор мировой практики изолированных микрогридов

Расположение АГЭК	Тип климата (по Кёппину)	Установленная мощность, кВт	Источники энергии и гибкости	LCOE, ₽/кВт·ч
	Территории в ум	еренных и субполяр	ных широтах	•
о. Кадьяк, Аляска, США	Субполярный морской (Cfc)		ДГУ 33 000 кВт	
			ВЭУ 9 000 кВт	
		75 000	ГЭС 30 000 кВт	8,5
			CHЭ (Pb/Ac Gel) 3 000 кВт/2 000 кВт·ч	
			СНЭ (маховик) 1 000 кВт	
. Суиндл, Британская Колумбия,	Умеренный морской (Cfb)	1 723	ГЭС 1 700 кВт	14,6
Санада		1723	СЭС 23 кВт	14,0
. Восточный Фолкленд,	Субполярный морской (Cfc) и		ДГУ 6 600 кВт	
олклендские о-ва, Великобритания	тундровый (ЕТ)	8 580	ВЭУ 1 980 кВт	18,2
			СНЭ (маховик) н/д	
. Эйгг, Шотландия, Великобритания	Умеренный морской (Cfb)		ДГУ 64 кВт	
			ГЭС 112 кВт	
		250	ВЭУ 24 кВт	18,9
			СЭС 50 кВт	
			СНЭ (Pb/Ac) 720 кВт·ч	
. Рай, Трёнделаг, Норвегия	Умеренный морской (Cfb) и		ДГУ (биодизель) 48 кВт	
	умеренный холодный (Dfb)		СЭС 86,4 кВт	
			ВЭУ 225 кВт	
		359	CHЭ (Li-ion) 550 кВт·ч	22,5
			Электролизер (РЕМ) 50 кВт	
			Топливный элемент (РЕМ) 100 кВт	
			Запас водорода 220 кВт-ч (10 кг, 30 бар)	
ı. Уналаклит, Аляска, США	Субарктический холодный (Dfc)		ДГУ 1 900 кВт	
		3 220	ВЭУ 600 кВт	26,1
			Электрокотельная 300 кВт	6

Расположение АГЭК	Тип климата	Установленная	Источники энергии и гибкости	LCOE, ₽/кВт·ч
	(по Кёппину)	мощность, кВт		
	Территории в троп	ических и субтропич	еских широтах	
о. Кобрадор, Ромблон, Филиппины	Влажный экваториальный (Af)		ДГУ 15 кВт	
		45	СЭС 30 кВт	9,1
			СНЭ (Li-ion) 180 кВт·ч	
о. Иерро, Канарские о-ва, Испания	Жаркий аридный (Bfh) и средизем-		ДГУ 12 700 кВт	
	номорский (Csa)	35 000	ВЭУ 11 500 кВт	9,7
		33 000	ГАЭС 11 300 кВт	9,7
о. Кинг, Тасмания, Австралия	Средизем-		ДГУ 6 000 кВт	
	номорский (Csb)		ВЭУ 2 450 кВт	
		8 840	СЭС 390 кВт	11,6
			СНЭ (Li-ion) 3 000 кВт / 1 500 кВт∙ч	
			СНЭ (маховик) 1 500 кВт	
Корал-Бэй, Карнарвон, Австалия	Жаркий аридный (Bwh)		ДГУ 2 240 кВт	
		2 915	ВЭУ 675 кВт	12,2
			СНЭ (маховик) 500 кВт	
о. Некер, Британские Виргинские о-ва	Муссонный (Am)		ДГУ 960 кВт	
		2 160	ВЭУ 900 кВт	14,6
		2 100	СЭС 300 кВт	14,0
			СНЭ (Li-ion) 500 кВт·ч	
о. Бонэйр, Малые Антильские о-ва,	Саванный (Aw)		ДГУ 14 000 кВт	
Нидерланды		25 000	ВЭУ 11 000 кВт	20,7
			СНЭ (Li-ion) 100 кВт·ч	