ФГБОУ ВО «Саратовский национальный исследовательский госуниверситет имени Н. Г. Чернышевского» Саратов, Россия

ПРОТОЧНЫЕ БАТАРЕИ НА ОСНОВЕ ОРГАНИЧЕСКИХ РЕДОКС-СИСТЕМ ДЛЯ КРУПНОМАСШТАБНОГО НАКОПЛЕНИЯ И ХРАНЕНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ

Заведующий кафедрой физической химии д.х.н., профессор Казаринов И. А. E-mail: <u>kazarinovia@mail.ru</u>, Тел. сл.: 8 (8452) 51-64-13 Тел. моб.: 8 927 222 70 90

ОСНОВНЫЕ ПРАКТИЧЕСКИЕ ПРИЛОЖЕНИЯ НАКОПИТЕЛЕЙ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ

- Альтернативная энергетика компенсации колебаний выработки энергии солнцем и ветром.
- Регулирование пиковых нагрузок в промышленных электрических сетях.
- Обеспечение электроэнергией крупных домохозяйств, удаленных сельскохозяйственных предприятий.
- Системы энергоснабжения морских судов с электрическими и гибридными силовыми установками.
- Производство электромобилей.

СОВРЕМЕННЫЕ ТИПЫ НАКОПИТЕЛЕЙ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ

- ФИЗИЧЕСКИЕ:
- кинетические (маховики);
- накопители электрической энергии на основе сжатого воздуха;
- гидроаккумуляторы.

• ЭЛЕКТРОХИМИЧЕСКИЕ:

- свинцово-кислотные аккумуляторы;
- никель-кадмиевые и никель-металлогидридные аккумуляторы;
- литий-ионные аккумуляторы;
- натрий-серные аккумуляторы;
- водородный цикл;
- суперконденсаторы;
- проточные редокс-батареи.

Сравнительный анализ электрохимических технологий аккумулирования электроэнергии

Электрохимичес- кая система	Срок службы, лет	Кол-во заряд- разрядных	Удельная энергия, Вт·ч/кг	Удельная мощность, кВт/кг	Стоимость, USD/кВт·ч
Pb PbO ₂	3-5	500-800	25-35	0.003-0.35	100-500
Ni-Cd	10	2000	40-60	0.01-0.7	400-1000
Li-ion		6000	110-180	0.3-3	700-5000
Суперконденса-	20	1 млн	2-5	5-10	16000-
торы					25000
Проточные	20	20000	20-40	высокая	400-700
батареи (V V)					
Проточные	>10	>10000	35-50	высокая	100 -200
батареи (орган.)					

Структура и принцип работы проточных редокс-батарей

Рис. 1. Общая схема проточной редокс-батареи

Достоинства проточных редокс-батарей

- надежны, долговечны и ориентированы на промышленное использование;
- могут достичь практически неограниченной энергии и мощности при использовании все больших и больших емкостей для хранения и количества ячеек;
- простота перезарядки;
- очень быстро реагируют на изменение нагрузки и не боятся перегрузок;
- идеально подходят для установки в источники бесперебойного питания и могут использоваться в ветровой и солнечной энергетике;
- «запас прочности» по цене стоимость таких батарей примерно в два раза ниже литий-ионных;
- пожаробезопасность, обусловленная отсутствием горючих компонентов и разогрева в процессе работы;
- экологическая безопасность и легкость утилизации и переработки компонентов;
- мощность и энергия редокс-батарей не зависят друг от друга: запас энергии зависит от объема раствора, а мощность - от площади электродов: количества и размера ячеек.

Недостатки проточных редокс-батарей

- небольшая плотность хранения энергии (если на каждый килограмм литий-ионного аккумулятора приходится от 80 до 200 Вт·ч·кг⁻¹, то в проточном редокс-аккумуляторе только 35 Вт·ч·кг⁻¹ при такой плотности энергии накопитель получится огромным);
- значительные издержки, связанные с монтажом и пускналадкой, в основном обусловленные крупными размерами проточных накопителей;
- сильная зависимость от окружающей температуры.

Проточные батареи на основе неорганических редок-систем

Характеристики перспективных неорганических редокс-систем для проточных батарей

Редокс-	Отрицательный электрод		Положитель	Напряже-	
система			электро	ние	
	Электролит	E _, B	Электролит	E ₊ , B	Разомкну-
					той
					цепи
					(НРЦ) <i>,</i> В
V/V	V ³⁺ +e ⁻ →V ²⁺	-0,255	V ⁵⁺ +e ⁻ →V ⁴⁺	0,991	1,2
Fe/Cr	Cr ³⁺ +e ⁻ →Cr ²⁺	-0,407	Fe ³⁺ +e ⁻ →Fe ²⁺	0,771	1,2
Br/S	S+2e ⁻ →2S ²⁻	-0,480	$Br_2 + 2e^- \rightarrow 2Br^-$	1,087	1,5
Zn/Br ₂	Zn²++2e⁻→Zn	-0,763	Br ₂ +2e⁻→2Br⁻	1,087	1,9
Ti/O	Ti ³⁺ +e⁻→Ti ²⁺	-0,900	O_2 +4H ⁺ +e ⁻	1,229	2,1
			$\rightarrow 2H_2O$		
Cr/O	$Cr^{3+}+e^{-}\rightarrow Cr^{2+}$	-0,407	O ₂ +4H⁺+e⁻	1,299	1,6
			$\rightarrow 2H_2O$		

Коммерческое использование проточных батарей на основе неорганических редокс-систем

- В настоящее время коммерческого применения достигли три электрохимические системы:
- VIV (Golden Energy Fuel Cell, Prudent Energy, Cellstrom Power),
- Fe|Cr (Deeya Energy),
- **Zn|Br** (Premium Power).
- Наибольшее распространение получила только ванадиевая редокс-проточная батарея, изобретенная в 1984 году Skyllas-Каzacos и его коллегами из Университета Нового Южного Уэльса, Австралия

Ванадиевая проточная редокс-батарея (Vanadium Redox-Flow Battery – VRFB)

Рис. 2. Принцип работы ванадиевой проточной редокс-батареи.

Ванадиевая проточная редокс-батарея (Электрохимические реакции)

На отрицательном электроде идет реакция:

 $\mathbf{V}^{2+}-\mathbf{e}^{-}\leftrightarrow\mathbf{V}^{+3}, \qquad E^{0}=-0,255 \,\mathrm{B} \quad (1a)$

На положительном:

 $VO_2^+ + e^- + 2H^+ \leftrightarrow VO^{2+} + H_2O, \qquad E^0 = 1,000 \text{ B} \quad (16)$

Суммарная реакция:

 $VO_2^+ + V^{2+} + 2H^+ \leftrightarrow VO^{2+} + V^{+3} + H_2O, E^0 = 1,255 B$ (1B)

Практическая удельная энергия - 25-30 Вт.ч.кг-1

Цинк-бромная проточная редокс-батарея (Zinc/Bromine Redox-Flow Battery – ZBFB)

На отрицательном электроде идет реакция:

 $\mathbf{Zn} - \mathbf{2e}^- \leftrightarrow \mathbf{Zn}^{2+}, \qquad E^0 = -0.76 \,\mathrm{B}$ (2a)

На положительном:

 $Br_2 + 2e^- ↔ 2Br^-, E^0 = 1.08 B$ (2б) Суммарная реакция:

 $\mathbf{Zn} + \mathbf{Br}_2 \leftrightarrow \mathbf{ZnBr}_2, \qquad E^0 = 1.84 \text{ B.}$ (2b)

Теоретическая удельная энергия - 440 Вт·ч·кг⁻¹

Практическая удельная энергия - 65-75 Вт.ч.кг-1

Гибридные проточные редокс-батареи

Гибридные редокс-батареи на основе:

(a) – 4,5-дигидрокси-1,3-бензолдисульфоната(тирон)//PbSO₄/Pb (b) – 2,5-дигидроксибензолдисульфоната (сульфохинол)//PbSO₄/Pb

Рис. 3. Циклические вольтамперограммы 0,05М растворов тирона (а) и сульфохинола (b) на графитовом электроде в 3 М H₂SO₄: (1) до и (2) после заряд-разрядного цикла, скорость сканирования потенциала: 10 мB/c

Гибридная редокс-батарея на основе

9,10-антрахинон-2,7-дисульфоновой кислоты (AQDS/AQDSH₂) с редокс-парой Br₂/Br⁻

Рис. 4. Схема антрахинон-бромидной проточной батареи (показан режим разряда; стрелки перевернуты для режима заряда)

Влияние функционализации антрахинона на его электрохимические свойства

Рис. 5. Циклические вольтамперограммы 1 мМ AQDS и DHAQDS в 1М H₂SO₄ на стеклоуглеродном электроде (скорость сканирования потенциала 25 мВ/с)

Щелочная гибридная редокс-батареи на основе 2,6-дигидроксиантрахинон и ферроцианида калия

Рис. 6. Циклические вольтамперограммы 2 мМ растворов 2,6-DHAQ и ферроцианида в 1 М КОН, сканированная при 100 мВ/с на стеклоуглеродном электроде (стрелки указывают направление сканирования)

Щелочная гибридная редокс-батареи на основе

2,5-дигидрокси-1,4-бензохинона (DHBQ) и ферроцианида калия

Рис. 7. Циклические вольтамперограммы 1 мМ растворов K₃Fe(CN)₆ / K₄Fe(CN)₆, и DHBQ / восстановленный DHBQ в 1 М КОН, сканированная при 10 мВ/с на стеклоуглеродном электроде (стрелки указывают направление сканирования)

Эксплуатационные характеристики гибридных проточных редокс-батарей в водных электролитах

Редокс-система	Отрицательный активный материал (в разряженном состоянии)	Положительный активный материал (в разряженном состоянии)	Электролит	Компонетны ячейки	Прибл. Экспер. НРЦ, В	Прибл. % Эффективность системы	Кол-во циклов
Кадмий / хлор- бензохинон (кислотная)	Cd^{2+}		1 M (NH ₄) ₂ SO ₄ + 0,5 M H ₂ SO ₄ ; 0,5 M отрицательных активных веществ	Кадмий, хлоранил / без сепаратора	1,2	Кулоновская: 99 Энергетическая: 82 (10 мА· см ²)	100
Свинец / бензохинон (кислотная)	PbSO4	OH OH SO ₃ H HO ₃ S	1 М H ₂ SO ₄ ; 0,25 М положительных активных веществ.	Углеродные войлоки / Nafion 115	1,1	Кулоновская: 99 Энергетическая: 80 (10 мА· см ²)	10
Антрахинон – бромид (кислотная)	HO ₂ S O O	HBr	1 M H₂SO₄; 0.1-1 M отрицательный активный материал; 0.5- 2.5 М положительный активный материал	Копировальная бумага / Nafion 212	0,86	Кулоновская: 99 (200- 500 мА· см ²)	>10
Антрахинон — Феррицианид (щелочная)	°0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Fe(CN) ₆ 4	1 М КОН; 0,5 М отрицательный активный материал; 0,4 М положительный активный материал	Копировальная бумага / Nafion 212	1,2	Кулоновская: 99 Энергетическая: 84 (100 мА· см ²)	100
Хиноксалин / Феррицианид (целочная)	N N	Fe(CN) ₆ ⁴	0,2 М КОН + 0.067 М КСl + 0,5 М К ₂ SO ₄ ; 0,2 М КОН + 0,5 М К ₂ SO ₄ ; 0,1 М отрицательный активный материал; 0,08 М положительный активный материал	Carbon felts/lithiated Nafion 117	1,4	Кулоновская: 92 Энергетическая: 83 (1,76 мА· см ²)	200

Проточные батареи на основе органических редокс-систем (ORBAT)

Полностью органическая редокс-батареи на основе

4,5-дигидроксибензол-1,3-дисульфоновой кислоты (BQDS) и антрахинон-2,6-дисульфоновой кислоты (AQDS)

Рис. 8. Схема органической проточной редокс-батареи (ORBAT) с использованием водных растворов BQDS на положительном и AQDS на отрицательном электродах

Электрохимические реакции, протекающие на электродах редокс-батареи ORBAT

Эксплуатационные характеристики некоторых полностью органических проточных редокс- батарей

Редокс-система	Отрицательный активный материал (в разряженном состоянии)	Положительный активный материал (в разряженном состоянии)	Электролит	Компонетны ячейки	Прибл. Экспер. НРЦ, В	Прибл. % Эффективность системы	Кол-во циклов
Антрахинон/бензохин он (кислотная)	SO ₃ H	OH OH SO ₃ H HO ₃ S	1 М H ₂ SO ₄ ; 0,2 М активных материалов	Копировальная бумага / Nafion 117	0,76	Кулоновская: > 95% (8-10 мА· см ²)	>12
Хиноксалин/бензохин он (щелочно- кислотная)	I I N	OH OH SO ₃ H HO ₃ S	0,2 M KOH + 0,067 M KCl + 0,5 M K ₂ SO ₄ ; 0,4 M H ₂ SO ₄ + 0,5 M K ₂ SO ₄ ; 0,1 M активных материалов	Углеродный войлок/ литированного Nafion 117	1,4-1,5	Кулоновская: > 70% (0,35 мА· см ²)	>10
Виологен на полимерной основе/ ТЕМРО (нейтральная)	R−N ⁺ ∕∕∕+N−R	R N-O.	2 M NaCl; 15 мл отрицательных активных веществ; 10 мл положительных активных веществ	Углеродные войлоки/ диализная мембрана на основе целлюлозы	1,1	Кулоновская: 99 Энергия: >75 (20-40 мА· см ²)	10
Метиловый виологен/ гидроксил- ТЕМРО (нейтральная)	-N+ +N-	OH N O.	1 M NaCl; 0,1 М активных веществ	Углеродные войлоки/ Selemion	1,25	Кулоновская: 99 Энергия: 45-82 (20- 100 мА·см ²)	100

Концепция симметричной органической редокс-батареи на основе ализарина

 $R = -H, -SO_3H$

Рис. 9. Ализарин (в центре) принимает два электрона и два протона для полного восстановления (слева) или отдает два электрона и два протона для полного окисления (справа) в окислительно-восстановительных реакциях

Электрохимическое поведение симметричных твердотелных редокс-батарей на основе фунционализованного и нефункционализированный, ализарина

Рис. 10. Циклические вольтамперограммы адсорбированного ализарина и сульфоната ализарина в 1 М H₂SO₄ на на копировальную бумагу. Скорость сканирования потенциала: 10 мВ/с

Характеристики симметричной ализариновой ячейки

Рис. 11. (а) Скоростная характеристика симметричного твердотельного ализаринового элемента при 10, 20, 50 и 100С. Удельная емкость основана на общем количестве активного материала ализарина на обоих электродах 223,3 мАч/г при 1С.

(b) Циклическая стабильность ализариновой ячейки при 10С

Основные выводы

- Конструкция редокс-проточных батарей обеспечивает значительное преимущество перед твердотельными аккумуляторными батареями за счет разделения энергии и выходной мощности: первая определяется размером бака и концентрацией электролита, вторая - площадью электродов.
- 2. Водные органические редокс-батареи используют водорастворимые органические и металлоорганические окислительно-восстановительные молекулы, состоящие только из доступных органических соединений. В основном это производные **хинона, антрахинона и ализарина**. Их высокая растворимость в воде, хорошо разделенные потенциалы окисления-восстановления, практически исключающие расщепление воды, стабильность, безопасность и низкая стоимость в масштабах массового производства, являются наиболее важными характеристиками для новых водных органических электролитов.
- Помимо этого, органический подход освобождает окислительновосстановительную химию от ограничений, связанных с небольшим числом элементарных окислительно-восстановительных пар неорганической природы, которые реально могут быть использованы в проточных редокс-батареях.

Основные выводы (продолжение)

- 4. Гибридные батареи, где используются органические и неорганические материалы, показали довольно хорошие результаты, и вполне могут заменить в недалеком будущем неорганические редокс-батареи. Оптимизация технических и эксплуатационных параметров, таких как, конструкция электрода, мембранный сепаратор - должна привести к значительным улучшениям производительности и достичь высокой плотности мощности.
- 5. Перспективным направлением в разработке проточных батарей на основе органических редокс-систем является концепция симметричных батарей, в которых окислительно-восстановительный материал принимает участие как на отрицательном электроде (окисляется), так и на положительном электроде (восстанавливается). Эта методология позволяет создавать твердотельные симметричные редокс-батареи (суперконденсаторы) для накопления электроэнергии.
- Использование органических веществ в симметричном элементе расширяет ресурсы недорогих окислительно-восстановительных материалов для водных аккумуляторных батарей, а простая конструкция элемента позволит в будущем оптимизировать работу в направлении безопасной, дешевой, легкой и гибкой электроники.

ПРОГРАММА НИОКР «Разработка проточных батарей на основе органических редокс-систем для крупномасштабного стационарного накопления и хранения электрической энергии»

Основные этапы программы

І этап

- 1. Поиск эффективных редокс-систем органической природы проточных батарей на основе производных хинона и антрахинона.
- 2. Разработка способов получения эффективных органических редокс-систем на основе производных хинона и антрахинона; изучение их физико-химических свойств.

II этап

Разработка конструкции опытной батареи проточного типа и технологической схемы получения органических редокс-систем на основе производных хинона и антрахинона.

III этап

Разработка технологи получения органических редокс-систем и изготовление пилотной батареи проточного типа для стационарного накопления и хранения энергии.

Электрохимическое поведение хинона на графитовом электроде

Рис. 1. Циклические вольтамперограммы процессов, протекающих в 0,1 М растворе хинона в 1 М H₂SO₄ на графитовом электроде: *а*) при различной скорости развертки потенциала, мВ•с-1: *1* – 10, *2* – 5, *3* – 1; *б*) при скорости развертки потенциала 10 мВ/с на 1-10 циклах.

Таблица 1

Результаты интегрирования поляризационных кривых, снятых на графитовом электроде в растворах гидрохинона и хингидрона в 0.5 М растворе серной кислоты

V = 5 mB/c					
Электролит	Количество электричества (Q), мКл (Анодный процесс)	Количество электричества (Q), мКл (Катодный процесс)			
0,2М гидрохинон в					
0,5М серной кислоте	64,3	62,4			
0,01М хингидрон в					
0,5М серной кислоте	111,6	104,2			
0,02М хингидрон в					
0,5М серной кислоте	164,5	147,5			

Электрохимическое поведение антрахинона и натриевой соли антрахинон-2-сульфокислоты на графитовом электроде

Рис. 2. Циклические вольтамперограммы процессов, протекающих в 0,001 М растворе антрахинона (*a*) и натриевой соли антрахинон-2-сульфокислоты;
(б) в 1 М H₂SO₄ на графитовом электроде при различной скорости развертки потенциала, мВ⋅с⁻¹: 1 – 10, 2 – 5, 3 – 1.

Электрохимическое поведение 0.1 М раствора натриевой соли антрахинон-2-сульфокислоты на графитовом электроде в 1 М H₂SO₄

 Рис. 3. Циклические вольтамперограммы 0,1 М раствора натриевой соли антрахинон-2-сульфокислоты в 1 М H₂SO₄ на графитовом электроде: *а*) при различной скорости развертки потенциала, мВ·с⁻¹: 1 – 10, 2 – 5, 3 – 1; б) при скорости развертки потенциала 10 мВ·с⁻¹ на 1-10 циклах

Таблица 2

Результаты интегрирования вольтамперных кривых процессов анодного окисления и катодного восстановления растворов натриевой соли гидрохинон-2-сульфокислоты на графитовом электроде в 1.0 М H₂SO₄ при различной концентрации соли (*v*=5 мB/c).

Электролит	Анодный процесс Q _A , мКл/см ²	Катодный процесс Q _к , мКл/см ²
0.001 М антрахинон-2- сульфокислота натриевая соль в 1 М серной кислоте	49	51
0.01 М антрахинон-2- сульфокислота натриевая соль в 1 М серной кислоте	64	74
0,1 М антрахинон-2- сульфокислота натриевая соль в 1 М серной кислоте	347	370
0,2 М антрахинон-2- сульфокислота натриевая соль в 1 М серной кислоте	476	484

Рис. 4. Зависимость плотности токов максимума анодного окисления (1, 2, 3, 4) и катодного восстановления (1', 2', 3', 4') растворов натриевой соли антрахинонсульфо-кислоты на графитовом электроде в 1 М H₂SO₄ от квадратного корня из скорости развертки потенциала при различной концентрации соли, М: 0,001 (1,1'), 0,01 (2,2'), 0,1 (3,3') и 0,2 (4,4').

Электрохимическое поведение анода (А) и катода (В) макета проточной батареи в 1.0 М растворе КОН

А) – натриевая соль антрахинонсульфокислоты (0,1 М)

B) – железоферроционидная редокс-пара (0,2 М)

Зарядные и разрядные кривые макета проточной батареи на основе: натриевой соли антрахинонсульфокислоты (0,1 М) и железоферроцианидной редокс-пары (0,2 М) в 1,0 М КОН: - скорости заряда: 25, 10, 5 ма/см2; - скорость разряда: 25 ма/см2

ЗАКЛЮЧЕНИЕ

- 1. Проведен отбор органических редокс-систем для разработки полностью органической проточной батареи и изучены их электрохимические свойства.
- В качестве редокс-системы для отрицательного электрода исследованы следующие химические соединения: антрахинон-2-сульфоновая кислота, антрахинон-2,6-дисульфоновая кислота, 1,8-дигидроантрахинон-2,7-дисульфоновая кислота.
- В качестве редокс-системы для положительного электрода исследованы: 1,2-бензохинон-3,5-дисульфоновая кислота, 4,5-дигидроксибензол-1,3дисульфоновая кислота.
- В 1 М растворе H₂SO₄ напряжение исследуемых ячеек составляло 0.8–1.1 В. Исследования показали, что при скорости циклирования ячеек 100 мА/см² кулоновская эффективность близка к 95-100%.
- Изучение электрохимического поведения хинона, антрахинона и некоторых его производных показало, что дальнейшей функционализации соединений на их основе возможна разработка конкурентно способной, экологически безопасной проточной редокс-батареи с хорошими техническими характеристиками для различных приложений.
- Переход к редокс-системам на основе органических молекул, имеющих большие размеры и анионную форму, в значительной степени устраняет кроссовер (проницаемость) таких молекул через катионообменные мембраны. Это позволит в дальнейшем, при оптимизации работы проточной батареи, использовать более дешевые мембраны по сравнению с мембраной «Nafion» (например, мембраны на основе целлюлозы).

ПУБЛИКАЦИИ

- 1. Годяева М. В., Казаринов И. А., Воронков Д. Е., Олискевич В. В., Остроумов И. Г. Проточные батареи на основе органических редокссистем для крупномасштабного хранения электрической энергии //Электрохимическая энергетика. 2021. Т. 21, No 2. C. 59–85. https://www.doi.org/1018500/1608–4039-2021-21-2-59-85
- Казаринов И. А., Воронков Д. Е., Годяева М. В., Олискевич В. В., Никоноров П. Г., Талаловская Н. М., Абрамов А. Ю. Электрохимические свойства хинонов, антрахинонов и их производных потенциальных редокс-систем для проточных батарей // Электрохимическая энергетика. 2021. Т. 21, No 4. C. 177–190. <u>https://doi.org/10.18500/1608-4039-2021-21-4-177-190</u>

СПАСИБО ЗА ВНИМАНИЕ!